Transition state clustering: Unsupervised surgical trajectory segmentation for robot learning
نویسندگان
چکیده
A large and growing corpus of synchronized kinematic and video recordings of robot-assisted surgery has the potential to facilitate training and subtask automation. One of the challenges in segmenting such multi-modal trajectories is that demonstrations vary spatially, temporally, and contain random noise and loops (repetition until achieving the desired result). Segments of task trajectories are often less complex, less variable, and allow for easier detection of outliers. As manual segmentation can be tedious and error-prone, we propose a new segmentation method that combines hybrid dynamical systems theory and Bayesian non-parametric statistics to automatically segment demonstrations. Transition State Clustering (TSC) models demonstrations as noisy realizations of a switched linear dynamical system, and learns spatially and temporally consistent transition events across demonstrations. TSC uses a hierarchical Dirichlet Process Gaussian Mixture Model to avoid having to select the number of segments a priori. After a series of merging and pruning steps, the algorithm adaptively optimizes the number of segments. In a synthetic case study with two linear dynamical regimes, where demonstrations are corrupted with noise and temporal variations, TSC finds up to a 20% more accurate segmentation than GMM-based alternatives. On 67 recordings of surgical needle passing and suturing tasks from the JIGSAWS surgical training dataset [7], supplemented with manually annotated visual features, TSC finds 83% of needle passing segments and 73% of the suturing segments found by human experts. Qualitatively, TSC also identifies transitions overlooked by human annotators.
منابع مشابه
An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network
RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...
متن کاملUnsupervised Surgical Task Segmentation with Milestone Learning
Surgical tasks are complex multi-step sequences of smaller subtasks (often called surgemes) and it is useful to segment task demonstrations into meaningful subsequences for:(a) extracting finite-state machines for automation, (b) surgical training and skill assessment, and (c) task classification. Existing supervised methods for task segmentation use segment labels from a dictionary of motions ...
متن کاملExtraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملTree Structured Dirichlet Processes for Hierarchical Morphological Segmentation
This article presents a probabilistic hierarchical clustering model for morphological segmentation. In contrast to existing approaches to morphology learning, our method allows learning hierarchical organization of word morphology as a collection of tree structured paradigms. The model is fully unsupervised and based on the hierarchical Dirichlet process (HDP). Tree hierarchies are learned alon...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015